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Abstract— Several authors have shown recently that
is possible to reconstruct exactly a sparse signal from
fewer linear measurements than would be expected from
traditional sampling theory. The methods used involve com-
puting the signal of minimum !1 norm among those having
the given measurements. We show that by replacing the !1

norm with the !p norm with p < 1, exact reconstruction
is possible with substantially fewer measurements. We give
many numerical examples in one complex dimension, and
larger-scale examples in two real dimensions.

I. INTRODUCTION

There has been much recent research (e.g., [1], [2],
[3]) on the subject of reconstruction of sparse signals
from a limited number of linear measurements. This
topic is known in the literature as compressed sensing or
compressive sampling, and has some overlap with basis
pursuit [4]. There are many relevant results, but we focus
here on those typified by the following example, from
[3].

We consider an M ×N measurement matrix Φ such
that for x ∈ CN , y = Φx is the vector of Fourier
coefficients of x at M randomly chosen frequencies.
Suppose that the sparsity of x is K; that is, x has K
nonzero elements. This can be stated in terms of the
!0 norm1 of x: ‖x‖0 = K. Then there is a constant
C, not depending on K or N , such that whenever
M > CK log N , one can reconstruct x exactly, with
very high probability, as the solution of the following
optimization problem:

min
u
‖u‖0, subject to Φu = y. (1)

(The constant C can depend on how small the proba-
bility of failure is to be guaranteed to be; it scales as
N−m where m depends on C.) Importantly, this result
continues to hold if the !0 norm is replaced by the !1

norm, resulting in a convex problem:

min
u
‖u‖1, subject to Φu = y. (2)

Address: Theoretical Division, T-7, MS B284, Los Alamos National
Laboratory, Los Alamos, NM 87544, USA. Phone: +1 +505 667-8093.
Fax: +1 +505 665-5757. E-mail: rickc@lanl.gov.

1This is a standard abuse of terminology: ‖ · ‖0 is not positive
homogeneous, yet is referred to as a norm.

The problem (1) is NP-hard [5], while the convex
problem (2) can be solved efficiently (using linear pro-
gramming, for example). That the former can be replaced
by the latter is the reason for the surge in recent interest.

It should be pointed out that the above is not special
to Fourier measurements. Similar results hold [1] if
the elements of Φ consist of random samples from the
standard normal distribution, or if each element is 1 or
−1 with equal probability. The key is that with high
probability, Φ will be a sampling from a basis that is
incoherent with the standard basis in CN . Just as a signal
cannot be localized in both time and frequency, there is
a lower bound on the combined support size of x and
Φx.

It is natural to ask what happens if the !1 norm is
replaced by the !p norm2 for some p ∈ (0, 1). The
resulting optimization problem will not be convex, and
is described in the literature as “intractable.” In this note,
we demonstrate that this problem can be solved tractably,
if not efficiently, and allows for exact reconstruction of
sparse signals with many fewer measurements than when
p = 1. Our numerical evidence consists of a suite of
one-dimensional examples and some larger-scale, two-
dimensional examples. The examples are designed for
direct comparison with results in [3]. We also include
an example illustrating robustness with respect to noise.

II. ONE-DIMENSIONAL EXAMPLES

We begin with a numerical investigation of the cir-
cumstances under which the solution to the problem
described in the introduction,

min
u
‖u‖p, subject to Φu = Φx, (3)

equals exactly x. As before, Φ will be a matrix having
the action of evaluation of the Fourier transform at a
randomly chosen collection of frequencies.

For our experiments, we fixed a signal length of
N = 512. As in [3], the numbers of measurements M
were 8, 16, . . . , 128. For each value of K, the sparsities
K are each multiple of M/16 up to M , rounded to

2As with ‖ ·‖0, ‖ ·‖p is not a norm when 0 < p < 1, though ‖ ·‖p
p

satisfies the triangle inequality and induces a metric.
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the nearest integer. The values of p were 1, 0.95, 0.75,
and 0.5. (Smaller values of p can be used, but only
with more careful supervision of parameters than that
afforded by the automated approach described below.)
The experiment was repeated 10 times for each value
of M and K. For each repetition, a spike-train signal
x =

∑K
k=1 zkek was constructed by randomly choosing

K elements of the standard basis {e1, e2, . . . , eN} of
CN , then randomly choosing the real and imaginary
parts of each zk from the standard normal distribution.
Conceptually, the matrix Φ consisted of a random se-
lection of M rows from the discrete Fourier transform
(DFT) matrix. In actual fact, instead of multiplication
by a matrix Φ, the fast Fourier transform would be
computed and the corresponding M elements selected.

The solution to problem (3) was computed by gradient
descent with projection. To avoid division by zero, |u|
was replaced by

√
|u|2 + ε2, where ε was decremented

by 5% every 100 iterations, beginning with 0.01. Every
100 iterations, an exact line search was performed,
then this stepsize used until the next line search. The
projection onto Φu = Φx was performed every iteration,
by computing the DFT of u, setting the previously-
chosen M frequency coefficients to those of x, then
computing the inverse DFT. This projection was also
incorporated into the line search: the stepsize was chosen
to minimize the !p norm of the projection along the ray
in the steepest descent direction. The iteration was begun
with the minimum-energy solution, in other words the
solution to (3) with p = 2. This is simply the inverse
DFT of the vector matching Φx in the appropriate M
places and zero elsewhere. This was done for 40000
iterations, by which point the !p norm had generally
ceased to decrease significantly. The final value of ε was
thusly 1.23×10−11. The elapsed time was approximately
30 seconds on a 1.3-MHz laptop, running in MATLAB.

For each repetition, the reconstruction was deemed
exact if the obtained minimizer u∗ satisfied ‖u−x‖∞ <
10−6. In each of several checked instances when this
condition was satisfied, further iteration would produce
a solution within less than 10−13 of x, an exact re-
construction by any reasonable numerical measure. The
percentage of exact reconstructions was recorded for
each K and M .

A pair of examples are in Figures 1 and 2. The sparsity
is K = 16, and M = 48 measurements were made. The
signal and measurement frequencies are the same for
both examples. What differs is that p = 1 in the first case
and p = 0.5 in the second case. When p = 1, the mini-
mizer u∗ differs substantially from the original signal x.
The maximum discrepancy is ‖u∗−x‖∞ = 1.08, and the
relative error is ‖u∗ − x‖2/‖x‖2 = 0.407. The !1 norm
of the minimizer is indeed lower than that of the signal,
‖u∗‖1 = 22.7 versus ‖x‖1 = 23.4. In the p = 0.5 case,

the reconstruction is exact: ‖u∗ − x‖∞ = 7.61 × 10−7

after 40000 iterations. Another 50000 iterations gave
‖u∗ − x‖∞ = 3.33× 10−14.

Fig. 1. The real and imaginary parts of a signal x (open markers) and
the solution u∗ (filled markers) to problem (2). The reconstruction is
not even approximately x.

Fig. 2. Same as the previous figure, except u∗ is the solution to
problem (3) with p = 0.5. The reconstruction is exactly x.

Figure 3 shows the results of the experiments, in the
format of [3]. The number of measurements M is on the
vertical axis and the ratio K/M of sparsity to number
of measurements is on the horizontal axis. (Only values
of K/M up to 3/4 are displayed.) The intensity gives
the observed frequency of exact reconstruction, with
white being 100% and black being 0%. Improvement
over the p = 1 case is clear even for p = 0.95. For
p = 0.5, exact reconstruction is obtained with a sparsity-
to-measurement ratio nearly double that required when
p = 1.

An additional experiment was conducted to provide
an example of the result of varying the number of
measurements with a fixed sparsity. We used K = 16
and values of M ranging from 24 to 80, for the same
values of p used above. The results are in Figure 4. It is
remarkable that even a value of p only slightly less than
1 gives exact reconstruction for significantly fewer mea-
surements (12% fewer, in this example). Decreasing p
further decreases the required number of measurements,
but it appears that the smaller the value of p, the less
improvement is seen for a given decrease in p.
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Fig. 3. Observed probabilities of exact reconstruction for different numbers of measurements (M ) and sparsity-to-measurements ratio (K/M ),
for four values of p: p = 1 (left), p = 0.95 (second from left), p = 0.75 (second from right), and p = 0.5 (right). Compared with p = 1,
exact reconstruction is obtained with larger values of K/M even for p = 0.95, and almost double the value of K/M for p = 0.5.

Fig. 4. Observed probabilities of exact reconstruction for a signal
of sparsity K, for different numbers of measurements M and four
values of p. Compared with p = 1, substantially fewer measurements
are required for exact reconstruction when p = 0.95. Decreasing p
further decreases the required value of M , but by less and less as p
gets smaller.

III. TWO-DIMENSIONAL EXAMPLE

We present a larger-scale, two-dimensional example,
designed as in [3], where the signal x is the 256× 256
Shepp-Logan phantom3 (Figure 5(a)). Here, it is the
gradient of the signal that is sparse, with ‖∇x‖0 = 3627
(out of 65536 pixels). The compressed-sensing theory
applies in this setting as well, as is well known [3]. The
problem (3) becomes:

min
u
‖∇u‖p, subject to Φu = Φx. (4)

As in [3], the Fourier coefficients measured by Φ will
not be at random frequencies, but instead along radial
lines in frequency space (as in Figure 5(b)). By the
Fourier slice theorem, sampling along a radial line in
frequency space is equivalent to sampling (the Fourier
transform of) the Radon transform along the angle de-
termined by the line. The experiment is equivalent to
attempting to reconstruct the phantom from a limited
number of radiographic projections (or views).

We used gradient descent with projection as in Sec-
tion II, but with ε and the step size chosen manually

3The text of [3] gives conflicting implications about whether it is
the 256 × 256 or 512 × 512 phantom that is used. Examining the
figures confirms that it is the 256× 256 phantom.

as the iteration proceeds. Roughly 105 iterations were
required, taking about four hours. (Given that the signal
was 128 times larger than in the one-dimensional exam-
ples and took very roughly 480 times longer, one can
make the crude estimate of an N log N scaling.) Gra-
dients were computed with simple forward differencing,
with backward differencing used for divergences. In both
cases, the boundary conditions were periodic.

In [3], exact reconstruction is claimed for 22 views in
the p = 1 case, for which there are M = 5481 Fourier
coefficients measured. In fact, we find that 17 views
suffice (or M = 4257; see Figure 5(d)), while 16 views
do not (M = 4017). For p = 0.5, however, 10 views
(M = 2521) are sufficient for exact reconstruction.
Decreasing p further was not found to decrease the
number of views required. That exact reconstruction can
occur with a sparsity-to-number-of-measurements ratio
exceeding 1 must surely rely on special properties of
the phantom or of the sampling pattern, as this is not
generally possible even with p = 0.

We also examine the effect of noise in the mea-
surements. We perturb the measured Fourier coefficients
by randomly chosen complex numbers, with standard-
normally distributed real and maginary parts. Using p =
0.5 and 10 views, the reconstruction is a close approx-
imation of the true phantom. A few specks are all that
can be observed. The !∞ error is ‖u∗ − x‖∞ = 0.0938,
and the !2 relative error is ‖u∗ − x‖2/‖x‖2 = 0.0163.
With p = 1 and 17 views, a reasonable approximate
phantom is obtained, with some blotchiness. The !∞

error is ‖u∗ − x‖∞ = 0.245, and the !2 relative error is
‖u∗ − x‖2/‖x‖2 = 0.0505.

IV. CONCLUSIONS

The ability to reconstruct signals from very few
measurements is an important development in signal
processing. In applications where data acquisition is
expensive or difficult, compressive sensing can allow
good results to be obtained in a manner that would
once have been infeasible. In this note, we have seen
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Fig. 5. (a) The 256 × 256 Shepp-Logan phantom. (b) The white
pixels show where the Fourier transform is sampled with 17 views. (c)
The minimum-energy or backprojection reconstruction with 17 views
is very poor. (d) The reconstruction from 17 views with p = 1 is exact.
(e) The reconstruction from 16 views with p = 1. It is not quite equal
to the phantom, and has a smaller !1 norm. (f) The Fourier transform
sample pattern for 10 views.

that by using !p minimization with p < 1, fewer
measurements are required than previously observed.
The required reconstruction time is generally longer than
with p = 1, but much less than with p = 0. Moreover,
the algorithmic approach in this note is relatively naive;
further research on the !p optimization problem should
reduce the reconstruction time further. This will increase
the number of applications in which the !p approach is
worthwhile.
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Fig. 6. (a) The reconstruction from 10 views with p = 0.5 is exact.
(b) The reconstruction from 10 views with p = 1 is poor.

(a) (b)

Fig. 7. (a) The reconstruction from 17 noisy views with p = 1 is
reasonable, but blotchy. (b) The reconstruction from 10 noisy views
with p = 0.5 is good, having only a few specks.
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